Domain mdci.de kaufen?

Produkt zum Begriff Learning:


  • School Development, Teacher Training, and Digital Learning Contexts
    School Development, Teacher Training, and Digital Learning Contexts

    School Development, Teacher Training, and Digital Learning Contexts , This book summarizes the results of a multimethod project on school development performed during the COVID-19 pandemic. It combines innovative theoretical approaches and findings as well as long-term online research activities in which student assessments delivered the bases for adaptive teacher trainings. The theoretical foundations relate to sustainable conditions of classroom and school development, an approach to personality development, and a focus on instructional coherence. Empirical findings concern the development of learning-strategy use and classroom needs over time as well as a model for effective teacher education and related course evaluations. A further research area concerns advanced perspectives from digital-learning research, such as the effects of social media in classrooms, mixed and virtual learning materials, computer-based collaborative learning, and innovative interventions in media research. The book is aimed at researchers, teacher trainers, instructional designers, and practitioners in the field of school development as well as teacher education. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 34.90 € | Versand*: 0 €
  • Ekman, Magnus: Learning Deep Learning
    Ekman, Magnus: Learning Deep Learning

    Learning Deep Learning , NVIDIA's Full-Color Guide to Deep Learning: All StudentsNeed to Get Started and Get Results Learning Deep Learning is a complete guide to DL.Illuminating both the core concepts and the hands-on programming techniquesneeded to succeed, this book suits seasoned developers, data scientists,analysts, but also those with no prior machine learning or statisticsexperience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers,Magnus Ekman shows how to use them to build advanced architectures, includingthe Transformer. He describes how these concepts are used to build modernnetworks for computer vision and natural language processing (NLP), includingMask R-CNN, GPT, and BERT. And he explains how a natural language translatorand a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples usingTensorFlow with Keras. Corresponding PyTorch examples are provided online, andthe book thereby covers the two dominating Python libraries for DL used inindustry and academia. He concludes with an introduction to neural architecturesearch (NAS), exploring important ethical issues and providing resources forfurther learning. Exploreand master core concepts: perceptrons, gradient-based learning, sigmoidneurons, and back propagation See how DL frameworks make it easier to developmore complicated and useful neural networks Discover how convolutional neuralnetworks (CNNs) revolutionize image classification and analysis Apply recurrentneural networks (RNNs) and long short-term memory (LSTM) to text and othervariable-length sequences Master NLP with sequence-to-sequence networks and theTransformer architecture Build applications for natural language translation andimage captioning , >

    Preis: 49.28 € | Versand*: 0 €
  • Jünger, Michael: Strategy Design Innovation
    Jünger, Michael: Strategy Design Innovation

    Strategy Design Innovation , The new and revised 6th edition of this comprehensive book explores the concept of Strategy Design as an innovative approach to Strategic Management. After an overview of the framework conditions under which strategies and business models are developed today, the authors describe in detail the approach and the ongoing process of Strategy Design Innovation. The focus is on the Strategy Design Toolbox, which covers the necessary instruments for analysis and forecasting, strategy formulation, realization, and control. Divided into seven perspectives, the toolbox provides relevant questions that need to be answered. Many examples and real-life applications give inspiration and generate a fundamental understanding. Strategy Design Innovation is a modern and market-driven book with a variety of tools, case studies, templates, and practical online resources. It is developed for the challenges of managers, strategists, entrepreneurs, business developers and students with the need for creating a strategic mindset and strategic capabilities. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 36.80 € | Versand*: 0 €
  • Easy Learning
    Easy Learning

    Kinder-Wanduhr "Easy Learning", Durchmesser 30 cm, geräuscharm

    Preis: 25.49 € | Versand*: 6.95 €
  • Warum Deep Learning im Vergleich zu Machine Learning?

    Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.

  • Was ist der Unterschied zwischen Deep Learning und Machine Learning?

    Deep Learning ist eine spezielle Methode des Machine Learning, die auf künstlichen neuronalen Netzwerken basiert. Es ermöglicht das Lernen von hierarchischen und komplexen Merkmalsdarstellungen, um automatisch Muster und Strukturen in Daten zu erkennen. Im Gegensatz dazu ist Machine Learning ein breiterer Begriff, der verschiedene Algorithmen und Techniken umfasst, um Computermodelle zu erstellen, die aus Daten lernen und Vorhersagen treffen können. Deep Learning ist also eine Teilmenge des Machine Learning.

  • Was ist Python Machine Learning?

    Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.

  • Ist Machine Learning bereits künstliche Intelligenz?

    Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.

Ähnliche Suchbegriffe für Learning:


  • Visible Learning 2.0
    Visible Learning 2.0

    Visible Learning 2.0 , Als das Original von Visible Learning im Jahr 2008 veröffentlicht wurde, stellte es sich sofort als eine verlegerische Sensation heraus. Das Interesse an dem Buch war beispiellos und innerhalb weniger Tage war es ausverkauft. Im TES (Times Educational Supplement) wurde es als "der Heilige Gral des Unterrichts" bezeichnet. Die Forschung, auf die die vorliegende Weiterentwicklung von Visible Learning basiert, stützt sich inzwischen auf mehr als 2.100 Meta-Analysen (mehr als doppelt so viele wie in der ursprünglichen Veröffentlichung mit ca. 800 Meta-Analysen), die mehr als 130.000 Studien umfassen und an denen geschätzt mehr als 400 Millionen Lernende aus aller Welt teilgenommen haben. Dieses Buch ist jedoch mehr als nur eine Neuauflage: Es ist eine Weiterentwicklung, die das große Ganze beleuchtet, die Umsetzung von Visible Learning in den Schulen reflektiert, wie es verstanden - und manchmal auch missverstanden - wurde und welche Richtung die Forschung in Zukunft einschlagen sollte. Visible Learning 2.0 bekräftigt John Hatties Wunsch, nicht nur das in den Blick zu nehmen, was funktioniert, sondern auch und vor allem das, was am besten funktioniert, indem er entscheidende Fragen stellt wie: Warum ist die derzeitige Grammatik des Schulunterrichts in so vielen Klassenzimmern so fest verankert und wie können wir sie verbessern? Warum ist die Lernentwicklungskurve für Lehrpersonen nach den ersten Berufsjahren so flach? Wie können wir die Denkweise von Lehrpersonen so entwickeln, dass sie sich mehr auf das Lernen und Zuhören konzentrieren (und weniger auf das Lehren und Sprechen)? Wie können wir Forschungsergebnisse in die Diskussionen der Schulen und der Kollegien bringen? Zu den besprochenen Bereichen gehören: - Die Forschungsbasis und die Reaktionen auf Visible Learning - Das Visible Learning Modell - Die bewusste Abstimmung von Lern- und Lehrstrategien - Der Einfluss des Elternhauses, der Lernenden, der Lehrpersonen, der Klassenzimmer, der Schulen, der Lehrpläne auf die Lernleistung. - Der Einfluss von Technologie Aufbauend auf dem Erfolg des Originals erweitert diese mit Spannung erwartete Weiterführung John Hatties Modell des Lehrens und Lernens auf der Grundlage von Einflussgrößen und ist eine unverzichtbare Lektüre für alle, die im Bildungsbereich tätig sind - sei es als Forschende, Lehrpersonen, Lernende, Schulleitungen, Lehrerbildnerinnen und Lehrerbildner oder politische Entscheidungsträger. John Hattie ist emeritierter Professor an der Graduate School of Education der Universität von Melbourne, Australien. Er ist einer der weltweit bekanntesten und meistgelesenen Bildungsexperten. Seine Bücher zu Visible Learning wurden in 29 Sprachen übersetzt und über 2 Millionen Mal verkauft. Stephan Wernke vertrat die Professur für Schulpädagogik an der Universität Vechta und ist wissenschaftlicher Mitarbeiter in der Schulpädagogik und Allgemeinen Didaktik an der Carl von Ossietzky Universität in Oldenburg. Er hat an mehreren Übersetzungen von John Hatties Büchern mitgewirkt (u. a. Lernen sichtbar machen). Klaus Zierer ist Ordinarius für Schulpädagogik an der Universität Augsburg und Associated Research Fellow am Centre on Skills, Knowledge and Organisational Performance (SKOPE) der University of Oxford. Er hat bereits mehrere Bücher von John Hattie ins Deutsche übertragen (u. a. Lernen sichtbar machen) und auch auf Englisch mit ihm publiziert (u.a. 10 Mindframes for Visible Learning). , >

    Preis: 32.00 € | Versand*: 0 €
  • Nuk Easy Learning Fütterlöffel
    Nuk Easy Learning Fütterlöffel

    Nuk Easy Learning Fütterlöffel können in Ihrer Versandapotheke www.apolux.de erworben werden.

    Preis: 6.36 € | Versand*: 3.99 €
  • Learning Resources® Buzzer
    Learning Resources® Buzzer

    Produktdetails: Alter: ab 3 Jahren Mit den farbenfrohen Buzzern macht der Unterricht einfach SpaßSelbst schwierige Übungen werden zur spannenden Quizshow, bei der alle mitmachen wollen Das Set enthält vier kunterbunte Buzzer (Blau, Rosa, Grün und Orange) Jeder Buzzer hat einen eigenen, individuellen Ton, wodurch die Buzzer leicht voneinander unterschieden werden können: Hupe, Boxring-Glocke, Türklingel und Boing-Ton Maße & Gewicht: Maße (Länge x Breite x Höhe): 30,3 x 20,9 x 22,5 cmMaße pro Buzzer: 9 cmIm Lieferumfang enthalten:Achtung: Benötigte Batterien: 2 x AAA pro Buzzer nicht im Lieferumfang enthalten

    Preis: 19.31 € | Versand*: 4.95 €
  • Nuk Easy Learning Esslernschale
    Nuk Easy Learning Esslernschale

    Nuk Easy Learning Esslernschale können in Ihrer Versandapotheke www.apolux.de erworben werden.

    Preis: 10.21 € | Versand*: 3.99 €
  • Was sind die wichtigsten Funktionen, die ein Learning Management System bieten sollte, um effektives E-Learning zu ermöglichen?

    Ein Learning Management System sollte Funktionen zur Erstellung und Verwaltung von Kursen und Lerninhalten bieten. Es sollte auch Möglichkeiten zur Interaktion zwischen Lehrern und Lernenden sowie zur Verfolgung des Lernfortschritts und der Leistung der Teilnehmer bereitstellen. Zudem sind Funktionen zur Personalisierung des Lernens, wie z.B. individuelle Lernpfade oder Feedback-Mechanismen, entscheidend für effektives E-Learning.

  • Mögt ihr Distance Learning oder Präsenzunterricht mehr?

    Als KI habe ich keine persönlichen Vorlieben, aber ich kann sagen, dass es Vor- und Nachteile sowohl beim Distance Learning als auch beim Präsenzunterricht gibt. Distance Learning bietet Flexibilität und die Möglichkeit, von überall aus zu lernen, während Präsenzunterricht den direkten Austausch mit Lehrern und Mitschülern ermöglicht. Letztendlich hängt es von den individuellen Präferenzen und den spezifischen Umständen ab, welches Format bevorzugt wird.

  • Habe ich Deep Learning so richtig verstanden?

    Das kann ich nicht beurteilen, da ich nicht weiß, was du über Deep Learning weißt. Deep Learning ist ein Teilbereich des maschinellen Lernens, bei dem neuronale Netzwerke mit vielen Schichten verwendet werden, um komplexe Muster und Zusammenhänge in Daten zu erkennen. Es wird oft für Aufgaben wie Bild- und Spracherkennung eingesetzt.

  • Habe ich Deep Learning so richtig verstanden?

    Um das zu beurteilen, müsste ich wissen, was du über Deep Learning weißt. Grundsätzlich handelt es sich bei Deep Learning um einen Teilbereich des maschinellen Lernens, bei dem künstliche neuronale Netzwerke mit vielen Schichten verwendet werden, um komplexe Muster und Zusammenhänge in Daten zu erkennen und zu lernen. Es wird oft für Aufgaben wie Bild- und Spracherkennung eingesetzt.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.